
UCRL-PROC-206797

FUDGE: A Program for
Performing Nuclear Data Testing
and Sensitivity Studies

B. R. Beck

September 24, 2004

FUDGE: A Program for Performing Nuclear Data Testing and
Sensitivity Studies
Santa Fe, NM, United States
September 29, 2004 through October 1, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

FUDGE: A Program for Performing Nuclear Data Testing
and Sensitivity Studies

Bret R. Beck

Lawrence Livermore National Laboratory

Abstract. We have developed a program called FUDGE that allows one to modify data from LLNL's nuclear database.
After modifying data, FUDGE can then be instructed to process the data into the formats used by LLNL’s deterministic
(ndf) and the Monte Carlo (MCAPM) transport codes. This capability allows users to perform nuclear data sensitivity
studies without modification of the transport modeling codes. FUDGE is designed to be user friendly (object-oriented)
and fast (the modification and processing typically takes about a minute). It uses Python as a front-end, making it
flexible and scriptable. Comparing, plotting and printing of the data are also supported. An overview of FUDGE will be
presented as well as examples.

INTRODUCTION

A plethora of computer codes have been written
to model nuclear reactors and weapons. These
modeling codes require nuclear data (e.g., cross-
section and outgoing particle spectra) as input. In
general, these codes have no or limited capability to
perform sensitivity studies on the nuclear data. That
is, the ability to vary cross-section and/or outgoing
particle spectra data within reasonable uncertainties
in the data and to study how the output varies. In
addition, a rewrite of these codes to support
sensitivity studies would be unreasonable. A better
solution is to provide a way to modify the data before
they are inputted to the codes. In this way, only one
code needs to be written and maintained for
modifying the data, and users only need to learn one
interface to modify data.

When writing a code to modify nuclear data, one
must understand nuclear data categories and formats.
Nuclear data can be divided into three categories: 1)
experimental/theoretical, 2) evaluated and 3)
processed. Processed data is typically evaluated data
converted, via a processing code, into a form
required by a modeling code. For example, a
deterministic code may require multi-grouped data
while a Monte Carlo codes may require equal-
probable binned data. Because
experimental/theoretical data can require a lot of

time and expert knowledge of nuclear physics to
evaluate, and because there are various processing
codes (like there are various modeling codes), the
data modifying code should work with the evaluated
data. Of course, after data have been modified, it
should be easy to convert it into the required
processed data format. Hence, the modifying code
must interface with all possible processing codes.

 At Lawrence Livermore National Laboratory
(LLNL) we have developed a program1 called
FUDGE (For Updating Data and Generating ENDL)
that allows users to modify LLNL’s evaluated
nuclear data and to process the modified data for use
in LLNL’s modeling codes.

LLNL’s evaluated nuclear database, called
ENDL2 (Evaluated Nuclear Data Library), stores
distributions (e.g., cross-sections or outgoing particle
spectra) as pointwise data. Most evaluated nuclear
databases, like ENDF/B-VI, use the ENDF3 format,
which uses a combination of pointwise and
parametric form to represent data. At LLNL we have
developed codes to convert ENDF formatted data
into the pointwise ENDL format and we have
converted most ENDF formatted databases into
ENDL format.

FUDGE DESIGN REQUIREMENTS

In order for FUDGE to be useful for users, it was
determine that it must meet the following criteria:

• FUDGE must be user friendly. It must
be easy to retrieve data from an existing
evaluation, modify regions of it and
process the modification.

• FUDGE must be fast. The time to
modify and process must be of order a
minute or less.

• FUDGE must run on all computer
platforms. This implies that all
processing codes must also be portable.

• FUDGE must be scriptable. Users may
want to loop over many variations in the
data in their sensitivity studies.

To meet most of these requirements, it was decided
that the user interface to FUDGE should be written
in Python4. Python is an object-oriented, interpreted,
interactive programming language and comes
standard on most UNIX operating systems. FUDGE
uses Pythons object-orientation to allow users to
easily modify data. For example to increase a cross-
section, instantiated by the variable xsec, by 10% one
simply types in FUDGE (Python)

xsec_mod = 1.1 * xsec

In this example, the class for cross-section data
multiplies the cross-section at each point by 1.1 and
stores the result in xsec_mod.

HIERARCHICAL FORMAT

FUDGE mimics the hierarchical format of
ENDL. At the top of the hierarchy are the available
evaluated databases (e.g., ENDL94, ENDL99,
ENDF/B-VI). Under each database is a list of
incident particles (e.g., neutron, proton or deuteron
are possible incident particles in ENDL99). Under
each incident particle is a list of targets (isotopes)
listed as zaZZZAAA where ZZZ and AAA are the
number of protons and nuclei for a target
respectively (e.g., za003006 for 6Li and za094239 for
239Pu). The incident particle and target together
represent the left-hand-side of a reaction equation
(e.g., n + 6Li →). Under each target is the data for
reactions of the incident particle hitting the target.

The top class in FUDGE is the endlProject class
that represents a database/incident particle hierarchy.
When an endlProject is instantiated, it initially
contains no targets and the user can specify a default
database/incident particle to use when reading in a
target to be modified. Users specify targets to modify
using the endlProject’s readZA method. The target is
retrieved from the endlProject’s default database
unless another source is specified. Multiple targets
from various evaluations can be retrieved. Data from
one evaluation can be mixed and matched with other
evaluations. Data for the retrieved targets can be
modified, saved and processed. For example, the
following FUDGE commands read the 6Li target
from the neutron incident particle database of the
endl99 evaluation, save the modification
(modification commands not shown) and create a
new deterministic processed data file (ndf1):

e = endlProject(database=“endl99”, yi=“neutron”)
Li6 = e.readZA(3006)

(modifications go here)

e.save()
e.processs(“ndf1”, “ndf1.new”)

The last command interfaces FUDGE to the
processing routines. It uses the first argument
(“ndf1” is this example) as a template processed file.
FUDGE scans the template file to determine the type
of processing to be done (determinist transport in this
case) and to determine the parameters needed by the
processing code (e.g., group structure and Legendre
order information for deterministic transport). The
second argument (“ndf1.new”) is the name of the file
that is to contain the modified data.

DATA CLASSES

FUDGE currently supports 4 types of pointwise
data classes. These classes are designated by the
number of columns needed to represent the data (1d,
2d, 3d and 4d). For example, cross-sections are 2d
pointwise data where column 1 is the energy data
and column 2 is the cross-section data. All of these
classes support printing (converting the data to a
string) and plotting of the data. The classes are called
endl1dmath, endl2dmath, endl3dmath and
end4dmath.

Currently, the 2d data class, called endl2dmath, is
the most comprehensive. It contains method for
adding, subtracting, multiplying and dividing an
endl2dmath object by a number or another

endl2dmath object (see FUDGE EXAMPLE below).
Many other methods exist for the data classes.

FUDGE EXAMPLE

This section presents an example of a FUDGE
sessions. In this example, the cross-section for
6Li(n,t)α will be read in from the ENDL99 database
and modified by first scaling the cross-section by the
value 3.14. Secondly, the cross-section will be scaled
by the function show in figure 1.The results are then
plotted.

FIGURE 1. Plot of scaleFactor data used in FUDGE
example. This plot was make with line 9 of table 1. Figure
2 is the dialog window for this plot.

Table 1 shows the FUDGE commands executed
inside Python. Line 1 imports the FUDGE routines.
Line 2 instantiates an endlProject that uses
endl99/neutron database as the default when a target
is to be retrieved. Line 3 opens the 6Li target from
the default database and assigns the variable Li6 to it.
Note that no data has been read in at this point. Line
4 reads in cross-sections data for all reactions. The I
number specifies the data type (e.g., I=0 is cross-
section data and I=3 is a type of outgoing spectra
data). Line 5 assigns the variable xsec to the cross-
section for the n + 6Li reaction 6Li (n,t) α. Here, as
before, the I=0 requests cross-section data, while the
C=42 requests data triton as the only outgoing
particle (excluding the residual nucleus which in this
case is taken to be the outgoing α particle). Line 6
makes a copy of the cross-section with each cross-
section value scaled by 3.14. Line 7 creates an
endl2dmath object consisting of a Python list of (x,y)
points (In this example, x is energy and y is a unitless
number). A plot of scaleFactor’s data is shown in
figure 1. Line 8 makes a copy of the cross-section

scaled by scaleFactor. Note that both xsec and
scaleFactor contain the class endl2dmath. This class
creates a new endl2dmath object whose x values are
a union of the x values of xsec and scaleFactor, and
whose y values are the product of xsec and
scaleFactor y values at the corresponding x values
(i.e., energy). Linear interpolation is used to fill in
missing values.

Line 9 plots scaleFactor in an interactive plotting
window. A screen capture of the plot is shown in
figure 1. This plot can be modified via its dialog
window. Figure 2 is a screen capture of its dialog
window.

FIGURE 2. This is the dialog window for the plot in
figure 1. This dialog allows one to edit the labels and titles,
change the x and y ranges. Under the File menu, are
options to print, save-as-eps and save-as-ascii.

Line 10 uses the FUDGE function qmultiPlot to
display several curves on the same plot. The red
curve (most of it lies under the blue curve where
scaleFactor = 1) is the original 6Li(n,t)α cross-
section xsec. The green curve this xsec_mod and the
blue curve is xsec_mod2. Note that FUDGE makes it
easy to modify a region of the xsec data, allowing for
sensitivity studies on a region of the data.

FIGURE 3. Plot of 6Li(n,t)α cross-section. The red curve
is the original ENDL99 data. The green curve is the
original data scaled by 3.14. The blue curve is the original

data scale by the function shown in figure 1. This plot was
made with line 10 of table 1.

TABLE 1. Example FUDGE commands
FUDGE command Comment
1 >>> from fudge import * # Get the FUDGE routines
2 >>> e = endlProject(database = “endl99”, yi = “neutron”) # Create a new project
3 >>> Li6 = e.readZA(3006) # Get the Li-6 target
4 >>> Li6.read(I = 0) # Read in all cross-sections
5 >>> xsec = Li6.findData(C = 42, I = 0) # Get (n,t) cross-section
6 >>> xsec_mod = 3.14 * xsec # Scale xsec by 3.14
7 >>> scaleFactor = endl2dmath([[1e-10, 1], [1e-3, 1], [0.01, 3.14], \ # Define a vector

… [1e-1, 1], [20., 1]])
8 >>> xsec_mod2 = scaleFactor * xsec # Scale xsec by scaleFactor
9 >>> scaleFactor.plot() # Plot scaleFactor

10 >>> qmultiPlot([xsec, xsec_mod, xsec_mod2], legends = ["xsec", "xsec_mod", \ # Plot xsec, xsec_mod and
… “xsec_mod2"], xylog = 3, title="Li-6 (n,t) cross-section") # xsec_mod2 in one plot

IMPROVEMENTS

The current version of FUDGE is written using Python
lists to store data. These can be very inefficient when
searching for a value in the list. Python lists also
require a lot of memory. FUDGE is being modified to
store the data using Numerical Python5 arrays. The
ENDL format does not allow for uncertainty values. A
redesign of the ENDL format is in progress and
FUDGE needs to be updated to handle uncertainty
values. FUDGE needs to have more 3d and 4d math
functionality. Finally, add a Graphical User Interface
(GUI) to FUDGE.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
U.S. Department of Energy by Univ. of California,
Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-48.

REFERENCES

1. Here “program” is used to designate the modifying code
and other required codes (e.g., the processing codes).

2. Howerton, R. J., MacGregor, M. H., “The LLL
Evaluated Nuclear Data Library (ENDL): Description of
Individual Evaluations for Z=0,98”, Lawrence Livermore
National Laboratory Report UCRL-50400 Vol. 15 (1978)

3. US Evaluated Nuclear Data Library, ENDF/B-VI,
Release 8 – Produced by the Cross Section Evaluation
Working Group, released in October 2001, available at
www.nndc.bnl.gov/csewg/.

4. G. van Rossum and F.L. Drake (eds), Python Reference
Manual, PythonLabs, Virginia, USA, 2001. Available at
http://www.python.org.

5. D. Ascher, P.F. Dubois, K. Hinsen, J. Hugunin and T.
Oliphant, Numerical Python, Lawrence Livermore
National Laboratory, Livermore, California, USA, 2001.
Available at http://www.pfdubois.com/numpy/.

